If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+3000x-1000000=0
a = 1; b = 3000; c = -1000000;
Δ = b2-4ac
Δ = 30002-4·1·(-1000000)
Δ = 13000000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13000000}=\sqrt{1000000*13}=\sqrt{1000000}*\sqrt{13}=1000\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3000)-1000\sqrt{13}}{2*1}=\frac{-3000-1000\sqrt{13}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3000)+1000\sqrt{13}}{2*1}=\frac{-3000+1000\sqrt{13}}{2} $
| 32200=x-0,044x-0,08x | | -3(v+9)=-6v-6 | | 6z+1/4=7z+7/4 | | 4y-(2y-5)=-2 | | -3(v+9)=-6v+6 | | 52=n-24 | | 7y-17=-9(y+9) | | 4(x+3)=7(x+3)=90 | | 32200=x-0,044*x-0,08*x | | -7x=35/2 | | 7(v-5)=9v-25 | | 2x+16=3x-16 | | 3a-3=9=a | | 6x-1=4x-1=90 | | 2n+4-8n=-5 | | 7/2=2/9(2p-6)-p/6-p/9 | | 14.59+0.13n=15.09-0.7n | | 14.59+0.13n=15.09-0.7 | | y+3=123/4 | | 5(x-6)+-8-2x=x+2(x-11) | | 7x+3*2=9x | | 7x-7x=-9+9 | | 8x+7*4=-2x-4 | | 3x+20=8x-30=180 | | (5x+3)+(3x-22)=180 | | -2=-7x+3 | | 4=+6p | | −5(r−7)=17−8r | | 9y=18+6y | | x–18=–2x+5 | | 7p+6+8(6=+4p) | | 1/8x1/8x=×192 |